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Abstract
This paper concerns the existence of a closed-loop miscibility gap in sulfur–
tellurium liquid alloys for a concentration of 40 at.% sulfur. We first present
direct structural evidence of this two-phase domain based on neutron scattering
measurements. In the second part, the driving mechanisms leading to this phase
separation are discussed. A structural analysis combined with thermodynamic
modelling shows that the existence of this closed-loop miscibility gap is strongly
related to the structural changes occurring in pure liquid tellurium.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In past years the existence of liquid–liquid phase separation has triggered a large amount of
experimental and theoretical work to elucidate the underlying mechanisms of this peculiar
behaviour of liquid matter. Theoretical studies based on a hard sphere model have identified
the size and packing fraction of the different species as the origin of a phase separation. These
works [1] have shown that binary mixtures of hard spheres with a size ratio in the range from
0.05 to 0.20 exhibit a demixing transition in the liquid state. The fact that such small size ratios
are not present in a number of inorganic binary systems which show a liquid–liquid phase
separation [2] indicates that, beside geometrical considerations, bonding properties also have
to be taken into account for a proper understanding. In covalent systems the effect of chemical
bonding even becomes predominant because of its directional character. In these systems the
phase separation is assumed to be a manifestation of subtle changes in the balance between
the competing bonding trends of the different elements. This can be exemplified by many
binary mixtures containing at least one element with a directional bonding character, such as,
for instance, AgTe, FeTe, etc. Such alloys often show one or two miscibility gaps in their
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phase diagrams [3]. However, the separation between size and bonding effects is somewhat
artificial, because they are intimately related to the bond length, which is clearly dependent on
its coordination number. It remains that, except for systems where significant changes of the
electronic structure are observed, the atomic size of an element does not change significantly
upon melting, whereas the characteristics of the bonding may change more drastically if it
undergoes a structural change in the liquid state.

In some systems, generally organic solutions where the hydrogen bonding plays a
fundamental role, a closed region describing liquid–liquid immiscibility is observed in the
phase diagram. Such a closed-loop miscibility gap (CLMG) was first reported in the water–
nicotine system [4] and in aqueous solutions of butan-2-ol [5]. This behaviour is also
found in many other systems, such as alkypiridine solutions [6], polymer solutions [7, 8]
etc. To our knowledge, the sulfur–tellurium phase diagram stands as a unique example of
a binary inorganic system presenting re-entrant liquid–liquid miscibility. The experimental
facts supporting this peculiar behaviour are, up to now, of indirect nature. Firstly, density
measurements performed by γ -ray attenuation in the liquid state led to the conclusion that
a two-phase domain exists in a narrow temperature range (953 K < T < 993 K) and
concentration range (0.36 < xs < 0.42) [9]. Secondly, anomalies were also observed
in the temperature evolution of the sound velocity [10] and in the conductivity [11]. This
unusual behaviour could be related to the complex structural behaviour of liquid tellurium.
It is well established that tellurium undergoes a structural change in the (undercooled)
liquid state, evidenced by a well-defined maximum of the thermodynamic response functions
such as specific heat, magnetic susceptibility and isothermal compressibility [12–14].
Neutron scattering [15] and x-ray absorption [16] measurements, complemented by computer
simulations [17], have shown that the number of first neighbours in liquid tellurium increases
from two in the low-temperature state up to a value closer to three in the high-temperature
regime. This structural change takes place at around 693 K and is related to a covalent
enhancement of the interchain bonds. The temperature at which this structural change takes
place is shifted to higher values by adding sulfur or selenium, because the effect of adding
one of these elements is to reduce the formation of such interchain bonds [18–20]. As a result
of these competing effects, selenium-as well as sulfur-based tellurium alloys display complex
thermodynamic behaviour in the liquid state [37]. At low temperatures, the enthalpy of mixing
of the Se–Te system is negative, corresponding to an ordering tendency, while it becomes
positive in the Te-rich side at higher temperatures, indicating a tendency for phase separation.
A statistical model, based on the regular solution model and allowing the coordination of
the elements to vary, could provide some insight into the mechanisms responsible for this
tendency [21]. However, this effect is not strong enough to give rise to a miscibility gap,
as in the case of S–Te system.

The present work is devoted to a structural and thermodynamic study of S–Te liquid
alloys. The motivation for performing neutron scattering experiments on this system is two
fold. Firstly, there is no direct evidence of the existence of the CLMG. Small-angle scattering
measurements performed at a concentration inside the miscibility gap (xs = 0.4) allowed us
to observe and quantify the onset and the increase of concentration fluctuations in the liquid.
In a similar way, the total structure factors of the two phases in equilibrium were measured,
and they showed that two different liquids co-exist. Secondly, the driving mechanisms leading
to this phase separation are analysed. A detailed study of the local order in the liquid state
is presented over a large concentration and temperature range. The whole set of measured
total structure factors is analysed using structural modelling in order to obtain total and partial
coordination numbers. Combined with the statistical model cited above, a possible scenario for
the mechanisms involved in the phase separation is proposed.



Closed-loop miscibility gap in sulfur–tellurium melts 11473

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17

 

 q (Å
-1

)

Sc
at

te
re

d 
in

te
ns

ity
 I

'(q
) 

(a
.u

.)

 T=961 K
 T=953 K
 T=945 K
 T=935 K
 T=923 K
 T=897 K
 T=873 K

Figure 1. Small-angle scattered intensities for a S0.4Te0.6 alloy at different temperatures. Items
are experimental data and the solid lines represent the fitted curves determined using the Ornstein–
Zernike formalism [24].

2. Experiment

The samples were prepared by direct alloying of the pure elements (sulfur 99.9995% and
tellurium 99.9999% from Alfa-Johnson Mattey). The elements were introduced as small pieces
in silica containers and sealed under vacuum. All the samples were slowly heated up to the
liquid state to ensure the homogeneity of the starting melt. This procedure was performed
in situ by using a vanadium resistor. The temperature was measured using a K-type
thermocouple within an accuracy of 5 K. The geometry of the silica containers depends on the
experiment: silica tubes (inner diameter 10 mm, outer diameter 12 mm) were used to perform
local order measurements, while a flat cylindrical quartz vessel (diameter 25 mm, height
10 mm, wall thickness 1 mm) was used for small-angle neutron scattering experiments (SANS).

Local order measurements were performed on the 7C2 two-axis diffractometer of the
Orphee reactor at the Laboratoire Leon Brillouin (Saclay, France). The chosen wavelength was
equal to 0.707 Å using the Cu(111) Bragg reflection. The diffraction spectra were recorded
with a 640-cell multidetector, which provides an accurate determination of the structure factor
over a momentum transfer range q between 0.3 and 16 Å

−1
[22].

Small-angle neutron scattering experiments were performed at the same reactor on the
PACE spectrometer. In order to be able to detect concentration fluctuations, we chose an
incident wavelength equal to 5 Å, which allowed us to cover a q range between 0.0156 and
0.156 Å

−1
in the present experimental set-up.

3. Structural evidence for a phase separation

3.1. Small-angle neutron scattering

Figure 1 presents the obtained small-angle scattered intensities for a S0.4Te0.6 alloy at different
temperatures. Standard procedures were applied to subtract the contribution of the empty
cell [23].

At 773 and 873 K, the signal is flat, which is characteristic of an homogeneous liquid.
As the temperature is raised the signal increases, revealing the development of long-range
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correlation in the liquid caused by concentration fluctuations. The high vapour pressure (mainly
due to sulfur) turned out to be a major problem. Due to the explosion of the cell during the
experiment, the maximum temperature that could be reached was 961 K. However the number
of measured points is sufficient to conclude that the onset of concentration fluctuation is a
signature of the presence of liquid–liquid phase separation.

In order to analyse these inhomogeneities, it is necessary to relate the structure factor for
low q values to the concentration fluctuations of the system. In the case of a binary mixture, it is
convenient to use the Bhatia–Thornton partials [25]. Within this formalism, the total structure
factor is obtained as a linear combination of three partial structure factors, SNN, SNC, and SCC,
which explicitly introduce the concept of concentration correlation (the subscripts N and C
refer to density and concentration correlations, respectively):

S(q) = 〈b〉2

〈b2〉 SNN(q) + 2�b

〈b2〉 SNC(q) + �b2

〈b2〉 SCC(q) (1)

with 〈b〉 = xbS + (1 − x)bTe, 〈b2〉 = xb2
S + (1 − x)b2

Te and �b = bTe − bS. bS and bTe are,
respectively, the coherent scattering lengths of sulfur and tellurium, and x is the atomic fraction
fraction of sulfur.

At q = 0, and following Bhatia and Thornton [25], the three partial terms became a simple
expression of macroscopic quantities:

SNN(0) = N

V
kBTβT + δ2SCC(0) (2)

SNC(0) = −δSCC(0) (3)

SCC(0) = NkBT
1

( δ2G
δ2 x2 )T,P,N

(4)

with

δ = N

V
(VTe − VS) (5)

where kB is the Boltzman constant, G is the free enthalpy, VS and VTe are the partial molar
volumes, and βT is the isothermal compressibility.

Using the above equations, the null-angle total structure factor can then be written:

S(0) = AβT + BSCC(0) (6)

with

A = 〈b〉2

〈b2〉
N

V
kBT (7)

B =
(

N

V

)2
(VTebS − VSbTe)

2

〈b2〉 . (8)

For a binary liquid alloy, the compressibility and the partial volume are slowly varying
functions of temperature, compared to the strong divergence of the term ( δ2G

δ2 x2
S
)−1 or SCC(0)

approaching the critical point. Therefore, the strong divergence of the concentration
fluctuations will dominate the small-angle scattering near the critical point [26].

In order to analyse the small-angle pattern, it is conventional to use the Ornstein–Zernike
formalism [24]. Recently this formalism allowed us to evidence density fluctuations above the
critical point in supercritical selenium [27]. According to this theory and using the description
of Bhatia and Thornton, the structure factor is a Lorentzian function of the diffusion vector q:4

S(q) = 1 + AβT + BSCC(0) − 1

1 + q2ξ 2
. (9)

4 For the details of the calculation, please see [26].
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Table 1. Values of the parameters resulting from the fitting procedure using Ornstein–Zernike
formalism.

T (K) I0 (a.u.) A′ (a.u.) ξ (Å)

897 0.008 ± 0.003 0.018 ± 0.003 8.57 ± 1.98
923 0.008 ± 0.003 0.035 ± 0.002 9.79 ± 1.04
935 0.010 ± 0.001 0.050 ± 0.001 12.52 ± 0.63
945 0.011 ± 0.001 0.073 ± 0.001 14.00 ± 0.51
953 0.013 ± 0.002 0.097 ± 0.002 15.79 ± 0.81
961 0.016 ± 0.002 0.118 ± 0.002 17.52 ± 0.88

The SANS experiment did not provide the structure factor S(q) directly, but an intensity
Imeas(q) related to S(q) by the relation:

Imeas(q) = I0S(q) + IB(q) (10)

where I0 is a normalization factor depending in the neutron flux and the scattering power of
the sample. IB(q) is a background which includes the scattering from the vessel and the quartz
cell, as well as the incoherent contribution of the sample and the multiple scattering effects.
The determination of IB(q) is not simple and it is usual to take a sample run performed at
temperatures far from the critical region as IB(q). For this thermodynamic state, the value
SCC(0) and the correlation length ξ are negligibly small [26].

We used the sample run at 773 K to determine IB(q), and hence we have:

I0 S(q) = Imeas(q) − I773(q) = I ′(q). (11)

Using equation (9), we obtain:

I ′(q) = I0 + (AβT − 1)I0 + BSCC(0)I0

1 + q2ξ 2
. (12)

At a fixed temperature, the quantity (AβT − 1)I0 + BSCC(0) is assumed to be a constant, so we
fitted our data for each temperature using the following equation:

I ′(q) = I0 + A′

1 + q2ξ 2
. (13)

The fitted curves, obtained using a standard nonlinear least-square regression method, are
represented by solid lines in figure 1. The values obtained for I0, A′ and ξ are listed in table 1.
As there are no data available for the partial volumes and the isothermal compressibility in the
temperature range considered here, we could not deduce the absolute values of SCC(0).

An estimate of the value of the lower critical temperature can be obtained by fitting the
obtained values of ξ (Å) according to mean field theory. In this approximation, the correlation
length is written as:

ξ = ξ0

(
T − Tc

Tc

)−ν

(14)

with ν = 0.5.
The fit of the values of ξ , presented in figure 2, is satisfactory and leads to a value

for the critical temperature equal to 983 K ± 20 K. The value published by Tsuchiya [11]
(953 K) is slightly lower, but within the accuracy that we can expect from our rather indirect
determination.
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Figure 2. Evolution of the correlation length with increasing temperature. Items are the obtained
values using the Ornstein–Zernike formalism, and the solid line results from a fitting of these data
in the mean-field approximation.

3.2. Local order of the two phases in equilibrium

The method used to perform local order measurements of the two phases in equilibrium has
been described previously in [28]. The sample, inside its container, is regularly turned upside-
down during the experiment in order to avoid unwanted concentration gradients. In addition,
an automatically driven diaphragm enables us to measure separately the lower and the upper
part of the sample, which respectively correspond to more dense and the less dense phases in
equilibrium.

Figure 3 presents the measured structure factors at three different temperatures. On each
panel, the structure factor measured in the bottom and in the top of the container are represented
as well as the difference signal. The time evolution of the signal was checked by alternating
small counting sequences on the top and bottom parts.

For each measurement, the structure factor was obtained by subtracting from the total
signal the contribution of all the elements passing in the beam in exactly the same geometry.
The Paalman and Pings method [29] was used to obtain the transmission factor, providing
that both transmission and absorption processes are taken into account. Inelastic effects
were corrected using the method proposed by Placzek [30] and a standard multiple scattering
correction [31] was applied. An absolute normalization was performed using the scattered
intensity from a vanadium sample with a geometry identical to that of the samples.

As shown by the difference plot, at a temperature below the miscibility gap (T = 773 K)
(figure 3(a)), the two structure factors are the same within the statistical accuracy. At 993 K
(figure 3(b)), differences between the two structure factors can be noticed, essentially located
at low q values: in the upper part of the tube, the structure factor presents a shoulder at around
1.5 Å

−1
, and the first peak at around 2 Å

−1
is less intense than the second. As shown by our

previous work [32], these features are characteristic for a sulfur-rich phase. The difference
plot displays oscillations up to 8 Å

−1
and is smeared out at high q values. This point will be

discussed in detail in the next section. At higher temperature (1053 K), the two structure factors
became identical (figure 3(c)), the system is homogeneous again.

We must point out that the difference observed between the two structure factors is small.
However we are convinced that it is significant for structural changes, as the statistical noise is
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T = 773 K (a), T = 993 K (b) and T = 1053 K (c). In the bottom part of the graph the difference
between the two signals is represented.

clearly inferior to the amplitude of the oscillations. Moreover, to make sure that any difference
between the two measurements is not an artefact, the measurements in the bottom and in the
top were performed with short time intervals before summing up to improve the signal-to-noise
ration. Several measurements performed at the same temperatures show the same result.

4. Driving mechanisms for the phase separation

4.1. Neutron scattering study combined with a structural model

The measured structure factors of Sx Te1−x liquid alloys (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and
0.8) are presented in figures 4–6 at 723, 873 and 1023 K, respectively. Some of these data
have already been published in [32]. Here we present a more complete study over the whole
concentration range. The same corrections, as described in the previous section, were applied
to the raw data in order to obtain the structure factors.

The principle of modelling the structure factor at high q value was first used to describe the
molecular geometry in fullerene C60 powders [33]. We propose a generalization of this method
suitable to a chain network. This extension of the model is reasonable as, in the present system,
first neighbours are strongly bonded with directional covalent bonds, whereas neighbours at
higher distances are weakly bonded and do not contribute much to the structure factor in the
large q range.
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Figure 4. Experimental (symbols) and modelled (solid lines) total structure factors of Sx Te1−x
liquid alloys at 723 K. The curves were shifted in order to ensure legibility.

The modelling procedure [32] consists of writing the structure factor as:

S(q) = x2
Sb2

S

〈b〉2
SSS(q) + x2

Teb
2
Te

〈b〉2
STeTe(q) + 2

xSxTebSbTe

〈b〉2
SSTe(q) (15)

where SSS, STeTe and SSTe are the partial structure factors corresponding to sulfur–sulfur,
tellurium–tellurium and sulfur–tellurium contributions, respectively. bTe and bS are the
scattering lengths of tellurium and sulfur and 〈b〉 = (xTebTe + xSbS). We approximate the
partial structure factors Si j (q) at large q values by retaining only one distance (ri j ), typically
the first-neighbour distance between species i and j :

Si j (q) = Ni j

x j

sin(qri j)

qri j
exp

(−q2〈ui j 〉2

2

)
(16)

where i or j are either S or Te, ui j characterizes the fluctuations of the bond distances ri j , and
Ni j is the average number of atoms j surrounding atom i .

In addition, by taking into account the structural changes undergone by pure liquid
tellurium [15, 17], the partial structure factor of tellurium STeTe(q) is assumed to be the sum of
intrachain and interchain contributions. This is writen:

STeTe(q) = STeTeS(q) + STeTeL (q) (17)

where STeTeS corresponds to the contribution of the intrachain distance (short TeTe distance
rTeTeS ∼ 2.8 Å) and STeTeL (q) corresponds to the interchain distance (long TeTe distance:
rTeTeL ∼ 3.15 Å).
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Figure 5. Experimental (symbols) and modelled (solid lines) total structure factors of Sx Te1−x

liquid alloys at 873 K. The curves were shifted in order to ensure legibility.

The structure factors modelled are represented by solids lines on figures 4–6. As seen
in equation (16), this approximation is restricted to q values larger than ∼4 Å

−1
. The term

accounting for the disorder exp(
−q2〈ui j 〉2

2 ) (Debye–Waller factor) for the distances S–S, S–Te,
TeTeL and TeTeS is plotted in figure 7. One can see that these contributions are strongly damped
beyond ∼16 Å

−1
. However, the Debye–Waller factor associated with the TeTeL distance decays

much faster than the others. This supports the approximation of considering only four distances
in the model, since the contributions of longer distances will be strongly smeared out.

This modelling procedure yields the partial and total coordination numbers, plotted in
figures 8 and 9 respectively, over wide concentration and temperature ranges. The partial
coordination numbers of sulfur and tellurium are defined as NTe = NTeTe + NTeS and NS =
NSS+NSTe, respectively, and the total coordination number is defined as N = (1−x)NTe+x NS.
The results can be summarized as follows. Firstly, the total coordination number is higher
on the tellurium-rich side and increases with temperature. This is in agreement with the
published results for the structure of pure liquid sulfur which has two first neighbours over the
whole temperature range [34] and pure liquid tellurium whose number of nearest neighbours
increases from ∼2.3 (at the melting point) up to 3 [15, 17]. Secondly, at 723 K, the variation
in the total coordination number is weak (from 2.3 down to 2.0). This is related to the small
amount of three-fold coordinated Te atoms at low temperature. For higher temperatures, the
total coordination number rapidly decreases in the concentration range between x = 0.1 and
0.4 and the decrease is sharper as the temperature is increased. This variation in the total
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Figure 6. Experimental (symbols) and modelled (solid lines) total structure factors of Sx Te1−x

liquid alloys at 1023 K. The curves were shifted in order to ensure legibility.
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Figure 7. Debye–Waller factors associated to the S–S (line), S–Te (dashed line), Te–Tec (dotted
line) and Te–Tec (dashed-dotted line) distances. The ui j values used correspond to the S0.3Te0.7

alloy at 1023 K.

coordination number is essentially related to the partial coordination of Te, which increases
because interchain Te–Te bonds are formed (figure 8).
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At this point, we can explain more precisely the difference between the structure factors
measured on both sides of the miscibility gap (see section 3.2). Since the Debye–Waller factor
associated with the Te–Te interchain distances decays rapidly and since the structure of the two
liquids in equilibrium essentially differs by the number of TeTeL distances, the changes in the
structure factors of figure 3 are noticeable only in the small-q region.

4.2. Thermodynamic modelling

We propose to relate the mixing thermodynamic quantities of the binary system S–Te and the
coordination number obtained from the neutron scattering experiments. To this aim, we use a
regular model with multiple connectivity, as developed by Amzil et al [21] for the parent Se–Te
system. This model is based on the regular solution model developed by Guggenheim [35] with
three supplementary hypotheses:

• the binary alloy is treated as a ternary system with S, TeII and TeIII atoms, with coordination
numbers equal to 2, 2 and 3, respectively;

• contrary to a classical regular solution model, the lattice does not have a constant
coordination number—it depends on the nature of the atoms and on the temperature;

• the equilibrium TeII → TeIII in the presence of sulfur is described explicitly in terms of
pairs interactions.

The calculation of the configurational partition function and of the thermodynamics
functions is done within the Bragg–William statistical treatment (zero-order approximation)
which assumes a random distribution of the species on the network [36]. The details of the
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Figure 9. Evolution of the number of nearest neighbours as a function of the sulfur concentration
x , at three temperatures. The line is the interpolation used for thermodynamic modelling (see text
in section 4.2).

calculation are given in [21]; here, we just remind us of the main results. The Gibbs energy of
mixing is written as:

�Gm = [x3 − (1 − X23)(1 − x)]�G0 + 2xx2

d
W12 + 3xx3

d
W13

+
[

3x2x3

d
− (1 − x)

6X23(1 − X23)

3 − X23

]
W23 + RT [x ln x + x2 ln x2 + x3 ln x3

− (1 − x){X23 ln X23 + (1 − X23) ln(1 − X23)}] (18)

where

• x , x2, x3 are the molar fraction in the melt of S, TeII and TeIII respectively;
• X23 is the molar fraction of TeII upon the total number of tellurium atoms (TeII + TeIII) in

pure tellurium;
• d is defined as d = x + x2 + 3

2 x3,
• W12, W13 and W23 are interchange energies corresponding to the pairs S–TeII, S–TeIII and

TeII–TeIII;
• �G0 is the standard Gibbs energy of the transformation reaction TeII ⇔ TeIII.

The enthalpy of mixing �H m derives from �Gm :

�H m = [x3 − (1 − X23)(1 − x)]�H 0

+ 2xx2

d
W12 + 3xx3

d
W13 +

[
3x2x3

d
− (1 − x)

6X23(1 − X23)

3 − X23

]
W23 (19)

and the entropy of mixing �Sm is written:

�Sm = R[x ln x + x2 ln x2 + x3 ln x3 − (1 − x){X23 ln X23 + (1 − X23) ln(1 − X23)}]. (20)
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Table 2. Values of the parameters a0, a1 and a2.

T (K) a0 a1 a2

723 0.31 0.19 0.18
873 0.815 0.23 0.153

1023 0.96 0.26 0.115

The equilibrium condition between tellurium atoms TeII and TeIII can be written:

RT ln
X23

1 − X23
= �G0 − 6

(
1 − 6

(3 − X23)2

)
W23. (21)

The thermodynamic quantities �Gm,�H m and �Sm formally depend on six parameters,
which are the interchange energies W12, W13 and W23 and the molar fraction of sulfur (x),
TeII(x2) and TeIII(x3).

The total coordination number N can be written as a function of the concentration of the
different species in the system, i.e. N = 2x + 2x2 + 3x3. Bearing in mind that we have
x + x2 + x3 = 1, we are able to express N only as a function of x . This means that, at a given
sulfur concentration, the thermodynamic quantities only depend on the interchange energies
and on the total coordination number. We therefore express the concentration dependence of
the total coordination number resulting from the previous structural modelling in the form:

N(x) = 2 + a0

1 + exp
(

x−a1
a2

) . (22)

Table 2 gives the adopted values for a0, a1 and a2 at the three temperatures 723, 873 and
1023 K, and the continuous lines on figure 9 show the result obtained.

In the work of Amzil et al [21], the experimental enthalpy of mixing was used to fit the
parameter of the model, and the coordination number was deduced from the thermodynamic
quantities. Here, since we do not have any reliable thermodynamic data, we assume that W23

(TeII–TeIII interaction) has the same value as in the parent Se–Te system, i.e. W23 = 5 kJ mol−1.
Moreover, as the phase diagram of the S–Te system displays a large eutectic, it seems
reasonable to choose positive values for W12 and W13. The order of magnitude of the enthalpy
of mixing [37] and the variation of the specific heat as a function of x and T [38] lead us to
propose W12 = 6 kJ mol−1 and W13 = 8 kJ mol−1. We checked the stability of our results
by varying the Wi j values in a reasonable interval around the above values. For too large
absolute values, the enthalpy is systematically higher than the entropy and this leads, for the
temperatures of interest, either to a homogeneous liquid Wi j < 0 or to a demixing liquid
Wi j > 0. Let us note that, in the Bragg–Williams approximation used here, the entropy is only
a function of x, x2, x3 and X12 and these values are fixed with the results we obtain from the
structural modelling of the neutron scattering data. The Wi j values only modulate the amplitude
of the contribution of the enthalpy to �Gm .

The thermodynamic quantities obtained within this approximation are represented in
figures 10–12. They were calculated at 723, 873 and 1023 K and also in the high temperature
limit. In this limiting case, we assume that the equilibrium TeII–TeIII is completely shifted
towards the TeIII species. This correspond to X12 = 0 and x2 = 0 in equations (18), (19)
and (20); that is to say, to a binary solution of S and TeIII. The coordination number varies
linearly from three down to two, and we obtain an ideal entropy of mixing for a classical binary
system.

The behaviour of the Gibbs energy of mixing (figrue 10) indicates that the liquid is
homogeneous at 723 K and at 873 K, and that a phase separation occurs at 1023 K. Obviously,
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Figure 10. Variation in the Gibbs energy of mixing (free enthalpy) as a function of the concentration
of sulfur (x) for different temperatures.
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Figure 11. Variation in the enthalpy of mixing as a function of the concentration of sulfur (x) for
different temperatures.

the two-phase domain is too broad in concentration and lies were at too high temperatures,
but the model correctly yields a CLMG. Many reasons can account for the quantitative
discrepancies. Firstly, we used an oversimplification of a lattice model to treat a complex
sp bonding liquid. Secondly, the model is based on a disordered solution approximation [36]
which neglects any order effect for the calculation of the thermodynamic quantities. At last,
this model completely neglects the PV term in the calculation of the free enthalpy and enthalpy.

Analyses of the enthalpy (figure 11) and the entropy (figure 12) contributions to the Gibbs
energy are interesting. The enthalpy is positive at 723 K and becomes partially negative at 873
and 1023 K. This is in agreement with our estimated values of excess specific heat. For Te-rich
concentrations, the enthalpy of mixing always increases with temperature, and this tendency is
reversed for the highest sulfur concentration. The entropy of mixing also presents an unusual
behaviour. At 873 and 1023 K, it is negative in a quite large concentration range. This negative
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Figure 12. Variation in the entropy of mixing as a function of the concentration of sulfur (x) for
different temperatures.

value of the entropy can be explained by remembering that the binary system is treated as a
ternary one with a constraint on the molar fraction TeII and TeIII.

Moreover, it has to be underlined that the nonlinear evolution of the total coordination
number with the concentration—which indicates sharp structural changes in the melt—is a
necessary condition for the miscibility gap to appear. Indeed, if we assume a linear dependance
of the total coordination number N(x) = 2 +α(1 − x), this leads to an ideal entropy of mixing
�S = R[x ln x − (1 − x) ln(1 − x)], which does not lead to any miscibility gap. This may
explain why the CLMG is observed in the present system and not in Se–Te melts.

5. Conclusions

In the first part of this paper we gave a structural proof of the existence of a miscibility gap
in the sulfur–tellurium system, as previously suggested by Tsuchiya [11]. Small-angle neutron
scattering experiments indicate that the S0.4Te0.6 liquid is homogeneous just above the liquidus
and that, with increasing temperature, concentration fluctuations develop when approaching
the lower boundary of the CLMG. The structure factors of the two phases in equilibrium on
both side of the CLMG were measured: small but significant differences are observed at low
q values.

In the second part the partial coordination numbers obtained by fitting the total structure
factors are used as an input for a statistical mechanical model, taking into account the
peculiarities of this system (the change in the coordination number of the Te atoms). With
some reasonable additional assumptions, the calculated thermodynamic quantities of mixing
positively support the existence of a closed-looped miscibility gap. Although this second part is
qualitative, it presents the major interest in providing a coherent interpretation of the complex
thermodynamic and structural behaviour of this system. As in the parent Se–Te system, the
dominant feature is the structural change undergone by Te atoms going from a coordination
number of 2, forming chains in the undercooled regime, to about 3 at higher temperature.
Adding sulfur shifts the crossover between these two states towards higher temperatures and,
due to the positive (repulsive) interaction of the added sulfur atoms with the three-fold-
coordinated tellurium atoms, a phase separation tendency develops. This tendency is stronger
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in the S–Te system than in the parent Se–Te system and leads to phase separation at high
temperature, although the low-temperature liquid (just above the liquidus) is homogeneous. At
even higher temperatures, the larger contribution of the entropy of mixing makes the liquid
homogeneous again.
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